skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Potok, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Discrete manufacturing systems are complex cyber-physical systems (CPS) and their availability, performance, and quality have a big impact on the economy. Smart manufacturing promises to improve these aspects. One key approach that is being pursued in this context is the creation of centralized software-defined control (SDC) architectures and strategies that use diverse sensors and data sources to make manufacturing more adaptive, resilient, and programmable. In this paper, we present SDCWorks-a modeling and simulation framework for SDC. It consists of the semantic structures for creating models, a baseline controller, and an open source implementation of a discrete event simulator for SDCWorks models. We provide the semantics of such a manufacturing system in terms of a discrete transition system which sets up the platform for future research in a new class of problems in formal verification, synthesis, and monitoring. We illustrate the expressive power of SDCWorks by modeling the realistic SMART manufacturing testbed of University of Michigan. We show how our open source SDCWorks simulator can be used to evaluate relevant metrics (throughput, latency, and load) for example manufacturing systems. 
    more » « less